Deleting the wiki page 'DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart' cannot be undone. Continue?
Today, wavedream.wiki we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled variations ranging from 1.5 to 70 billion criteria to construct, experiment, and properly scale your generative AI ideas on AWS.
In this post, we demonstrate how to get started with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the designs also.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language model (LLM) developed by DeepSeek AI that utilizes reinforcement learning to boost thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A key identifying feature is its support knowing (RL) action, which was used to improve the design's actions beyond the standard pre-training and tweak procedure. By including RL, DeepSeek-R1 can adapt better to user feedback and objectives, eventually enhancing both importance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, suggesting it's geared up to break down complicated inquiries and reason through them in a detailed manner. This directed reasoning process allows the design to produce more accurate, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT abilities, aiming to create structured responses while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has actually recorded the market's attention as a versatile text-generation design that can be incorporated into numerous workflows such as representatives, and data interpretation jobs.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion criteria, allowing effective reasoning by routing queries to the most relevant professional "clusters." This technique enables the model to specialize in different issue domains while maintaining overall effectiveness. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 design to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more effective designs to mimic the habits and thinking patterns of the larger DeepSeek-R1 model, utilizing it as a teacher design.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this design with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid harmful content, and assess designs against key security requirements. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop several guardrails tailored to different use cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To ask for a limit increase, produce a limitation boost request and reach out to your account team.
Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For guidelines, see Establish permissions to utilize guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to introduce safeguards, avoid hazardous content, and assess models against key safety criteria. You can carry out safety procedures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to evaluate user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The basic circulation includes the following actions: setiathome.berkeley.edu First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After receiving the design's output, another guardrail check is used. If the output passes this last check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections demonstrate inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:
1. On the Amazon Bedrock console, select Model brochure under Foundation models in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and choose the DeepSeek-R1 design.
The model detail page provides vital details about the model's capabilities, pricing structure, and implementation standards. You can discover detailed usage guidelines, including sample API calls and code snippets for integration. The design supports different text generation tasks, consisting of content production, code generation, and question answering, utilizing its support learning optimization and CoT reasoning capabilities.
The page also includes release choices and licensing details to help you begin with DeepSeek-R1 in your applications.
3. To start using DeepSeek-R1, select Deploy.
You will be prompted to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of circumstances, go into a number of circumstances (between 1-100).
6. For Instance type, select your instance type. For optimal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended.
Optionally, you can configure innovative security and facilities settings, including virtual personal cloud (VPC) networking, service role authorizations, and encryption settings. For most utilize cases, the default settings will work well. However, for production deployments, you may want to examine these settings to align with your company's security and compliance requirements.
7. Choose Deploy to begin using the design.
When the release is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock play ground.
8. Choose Open in playground to access an interactive interface where you can explore different prompts and adjust design specifications like temperature level and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimum results. For example, content for inference.
This is an excellent way to explore the model's thinking and text generation abilities before integrating it into your applications. The playground offers instant feedback, assisting you understand how the model reacts to numerous inputs and letting you tweak your triggers for ideal results.
You can rapidly test the design in the play ground through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to perform reasoning utilizing a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have developed the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime customer, configures inference parameters, and sends out a request to produce text based upon a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML options that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart uses two practical techniques: utilizing the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both approaches to assist you choose the method that best matches your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be prompted to create a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The model web browser shows available designs, with details like the supplier name and design capabilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each model card reveals crucial details, including:
- Model name
Deleting the wiki page 'DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart' cannot be undone. Continue?